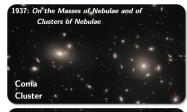
Astrophysical Sources as Dark Matter Detectors

Jacob Pilawa

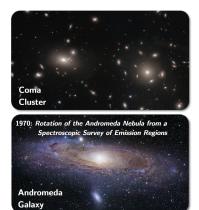
Physics 492: Honors Cosmin Ilie

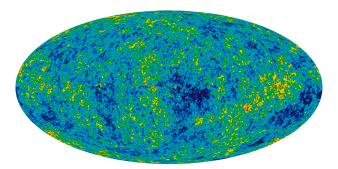
Spring 2020

Where did it all begin?

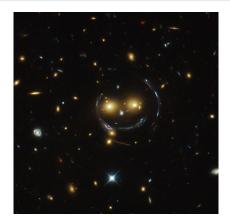


Where did it all begin?





Where did it all begin?



Where are we now?

Cosmic Microwave Background Radiation, WMAP.

Where are we now?

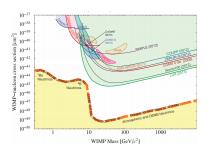
"Smiling" image of a galaxy cluster with lensed background galaxies.

Hitting the Neutrino Floor

XENON1T Direct Detection Experiment.

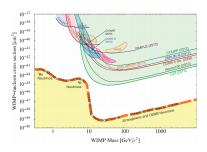
Hitting the Neutrino Floor

 Dark matter direct detection experiments are slowly reaching the limits of the instruments – DSNB neutrino noise is becoming an issue.



XENON1T Direct Detection Experiment.

So what do we do?


 If dark matter direct detection is slowly becoming obsolete, how can we probe to lower cross section bounds?

Cross section bounds from direct detection.

So what do we do?

- If dark matter direct detection is slowly becoming obsolete, how can we probe to lower cross section bounds?
- Look to astrophysics!

Cross section bounds from direct detection.

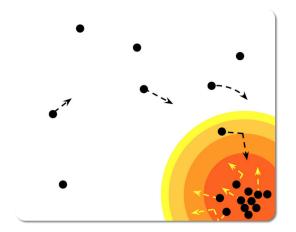
Other motivations!

GN-z11: $z\sim$ 11, with a super massive black hole at its center.

Other motivations!

GN-z11: $z \sim 11$, with a super massive black hole at its center.

• Freese, locco, Taoso, Gondolo, Gould, and more: Dark stars.


Other motivations!

GN-z11: $z \sim 11$, with a super massive black hole at its center.

- Freese, locco, Taoso, Gondolo, Gould, and more: Dark stars.
- Explanation of super massive black holes?

Mutliscatter Capture "Derivation"

Schematic of multiscatter capture.

With that in mind...

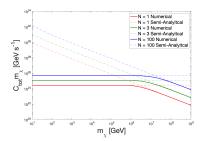
On paper:

```
Cap. Rate (N Scatters) = (stellar parameters) \times (prob. of scattering) \times (prob. of being captured by those scatters)
```

With that in mind...

On paper:

Cap. Rate (N Scatters) = (stellar parameters)
$$\times$$
 (prob. of scattering) \times (prob. of being captured by those scatters)

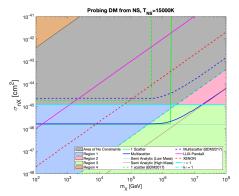

In practice:

$$\mathsf{C}_{N} = \pi R^{2} p_{N}(\tau) \frac{\sqrt{2} n_{\chi}}{\sqrt{3\pi} \bar{v}} \left(\left(2 \bar{v}^{2} + 3 v_{\mathsf{esc}}^{2} \right) - \left(2 \bar{v}^{2} + 3 v_{N}^{2} \right) \exp \left(- \frac{3 \left(v_{N}^{2} - v_{\mathsf{esc}}^{2} \right)}{2 \bar{v}^{2}} \right) \right)$$

$$C_{tot} = \sum_{N=1}^{\infty} C_N$$

Observational Effects (NS)

 Dark matter annihilation provides an additional luminosity source for the neutron star L_{DM}.


 $L_{DM} = C_{tot} m_{\chi}$ in neutron stars.

Constraining DM Properties (NS)

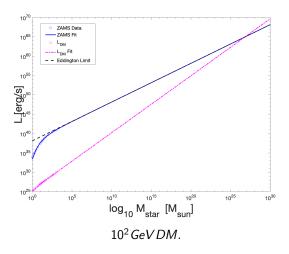
 This luminosity becomes important for old neutron stars so that DM has thermalized and annihilation is in equilibrium.

Constraining DM Properties (NS)

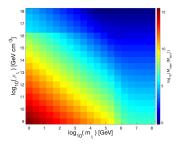
- This luminosity becomes important for old neutron stars so that DM has thermalized and annihilation is in equilibrium.
- \rightarrow Leading to constraints on m_{χ} and σ_{χ} for a given ρ_{χ} .

One more piece of physics needed

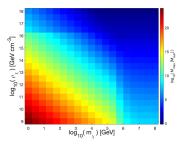
The **Eddington Luminosity** is the maximum luminosity a star can have while preserving hydrostatic equilibrium.


$$L_{Edd} = 3.7142 \times 10^4 \left(\frac{M_{\star}}{M_{\odot}}\right) L_{\odot}$$

Observational Effects (Pop. III)


Harder to deal with:

$$\mathsf{Bounds} \to \begin{cases} L_{edd}(M_{max}) = L_{DM}(M_{max}) + L_{nuc}(M_{max}) & : \mathsf{Strong\ Limit} \\ L_{edd}(M_{max}) = L_{DM}(M_{max}) & : \mathsf{Weak\ Limit} \end{cases}$$

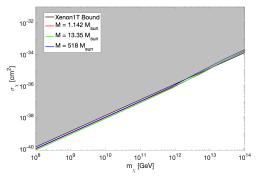

Observational Effects (Pop. III)

Mass Constraints (Pop. III)

Strong limit.

Weak limit.

Constraints from Pop. III Stars


• What happens if we observe an Eddington limited star?

$$L_{DM} \propto \sigma_{\chi} \rho_{\chi} M_{\star}^3/m_{\chi} R_{\star}^2$$

Constraints from Pop. III Stars

• What happens if we observe an Eddington limited star?

$$L_{DM} \propto \sigma_{\chi} \rho_{\chi} M_{\star}^3 / m_{\chi} R_{\star}^2$$

Key takeaways...

Takeaway 1

Direct detection experiments are quickly approaching the sensitivity of **background neutrinos**.

Key takeaways...

Takeaway 1

Direct detection experiments are quickly approaching the sensitivity of **background neutrinos**.

Takeaway 2

Astrophysical sources can be used to constrain the dark matter interaction cross section σ_Y .

Key takeaways...

Takeaway 1

Direct detection experiments are quickly approaching the sensitivity of **background neutrinos**.

Takeaway 2

Astrophysical sources can be used to constrain the dark matter interaction cross section σ_{γ} .

Takeaway 3

Neutron stars and Population III stars are promising objects to **probe dark matter below the neutrino floor** and beyond the Standard Model.

Thank you!

Approximate and Semi-Analytic Calculations

$$C_N = \sqrt{24\pi} p_N(\tau) n_\chi G M_\star \frac{1}{\bar{v}} \left(1 - \left(1 + \frac{2A_N^2 \bar{v}^2}{3v_{esc}^2} \right) e^{-A_N^2} \right)$$
 (1)

where

$$A_N^2 = \frac{3v_{esc}^2 N m_n}{\bar{v}^2 m_\chi} \tag{2}$$

$$\mathbf{C}^{\mathbf{k}}m_{\chi} = \begin{cases} \pi R^{2} \frac{\sqrt{2}n_{\chi}}{\sqrt{3\pi\bar{v}}} \left(2\bar{v}^{2} + 3v_{esc}^{2}\right) \frac{k(k+3)}{(n_{7}\sigma_{\chi}2R)^{2}} m_{\chi} & ; \frac{3(v_{N}^{2} - v_{esc}^{2})}{2\bar{v}^{2}} \gg 1, k < \tau \\ \pi R^{2} \frac{\sqrt{3}n_{\chi}}{\sqrt{2\pi\bar{v}^{3}}} 3v_{esc}^{4} z_{i} 4m_{N} \frac{2}{\tau^{2}} \left[\frac{k(k+1)(k+2)}{3} + z_{i} \frac{4m_{N}}{m_{\chi}} \frac{k(k+1)(k+2)(3k+1)}{12} \right] & ; \frac{3(v_{N}^{2} - v_{esc}^{2})}{2\bar{v}^{2}} \ll 1, k < \tau \\ \pi R^{2} \frac{\sqrt{2}n_{\chi}}{\sqrt{3\pi\bar{v}}} \left(2\bar{v}^{2} + 3v_{esc}^{2}\right) m_{\chi} & ; \frac{3(v_{N}^{2} - v_{esc}^{2})}{2\bar{v}^{2}} \gg 1, k > \tau \\ \pi R^{2} \frac{\sqrt{3}n_{\chi}}{\sqrt{2\pi\bar{v}^{3}}} 3v_{esc}^{4} z_{i} 4m_{N} \left[\frac{2\pi}{3} + z_{i} \frac{4m_{N}}{m_{\chi}} \frac{\tau^{2}}{2} \right] & ; \frac{3(v_{N}^{2} - v_{esc}^{2})}{2\bar{v}^{2}} \ll 1, k > \tau \end{cases}$$

Intricacies for Exotic Objects

$$\sigma o \sigma_{n\chi} rac{M_N^4}{m_n^4} F^2 \left(\langle E_R
angle
ight)$$
 (4)

$$C_N \to \frac{C_N}{1 - \frac{2GM}{Rc^2}} \tag{5}$$

$$\chi = \left[1 - \left(1 - \frac{2GM}{Rc^2}\right)^{1/2}\right] \tag{6}$$

$$v_{esc} \to \sqrt{2\chi}$$
 (7)

Neutron Star Constraint Criterion

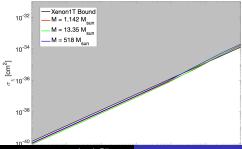
$$m_{\rm x}C_{\rm N} = L_{DM} = 4\pi\sigma_0 R^2 T_{NS}^4 \left(1 - \frac{2GM}{Rc^2}\right)^2$$
 (8)

leads to:

$$\sum_{N} p_{N}(\tau) \left(1 - \left(1 + \frac{2A_{N}^{2} \bar{v}^{2}}{3v_{esc}^{2}} \right) e^{-A_{N}^{2}} \right) = \operatorname{const} \frac{T_{NS}^{4}}{\rho_{X}}$$
 (9)

which is essentially:

$$L_{sources} + (heat rate) = L_{radiated}$$
 (10)


In equilibrium, (heat rate) = 0. With no sources (WD, NS), we get the constraint that we are claiming.

Future Work on Pop. III Stars

- We assumed a cross section σ_{χ} in calculating capture rate for Pop. III stars as a proof of concept.
- We then were able to extract the cross section that we assumed → proof of concept.
- Future work: Make no assumptions about the cross section and see what the plot below would look like:

Future Work on Pop. III Stars

- We assumed a cross section σ_{χ} in calculating capture rate for Pop. III stars as a proof of concept.
- We then were able to extract the cross section that we assumed → proof of concept.
- Future work: Make no assumptions about the cross section and see what the plot below would look like:

